1-D Kinematics: Chapter Outline || About the Tutorial || Tutorial Topics || Usage Policy || Feedback

Lesson 1: Describing Motion with Words

Introduction to the Language of Kinematics

Scalars and Vectors

Distance and Displacement

Speed and Velocity

Acceleration


Lesson 2: Describing Motion with Diagrams

Introduction to Diagrams

Ticker Tape Diagrams

Vector Diagrams


Lesson 3: Describing Motion with Position vs. Time Graphs

The Meaning of Shape for a p-t Graph

The Meaning of Slope for a p-t Graph

Determining the Slope on a p-t Graph


 

Lesson 4: Describing Motion with Velocity vs. Time Graphs

The Meaning of Shape for a v-t Graph

The Meaning of Slope for a v-t Graph

Relating the Shape to the Motion

Determining the Slope on a v-t Graph

Determining the Area on a v-t Graph

 

Lesson 5: Free Fall and the Acceleration of Gravity

Introduction to Free Fall

The Acceleration of Gravity

Representing Free Fall by Graphs

How Fast? and How Far?

The Big Misconception

 

Lesson 6: Kinematic Equations

The Kinematic Equations

Problem-Solving

Kinematic Equations and Free Fall

Sample Problems and Solutions

Kinematic Equations and Graphs

 

 

Lesson 5 : Free Fall and the Acceleration of Gravity

Introduction to Free Fall

A free-falling object is an object which is falling under the sole influence of gravity. Any object which is being acted upon only be the force of gravity is said to be in a state of free fall. There are two important motion characteristics which are true of free-falling objects:

  • Free-falling objects do not encounter air resistance.
  • All free-falling objects (on Earth) accelerate downwards at a rate of 9.8 m/s/s (often approximated as 10 m/s/s for back-of-the-envelope calculations)

 

Because free-falling objects are accelerating downwards at a rate of 9.8 m/s/s, a ticker tape trace or dot diagram of its motion would depict an acceleration. The dot diagram at the right depicts the acceleration of a free-falling object. The position of the object at regular time intervals - say, every 0.1 second - is shown. The fact that the distance which the object travels every interval of time is increasing is a sure sign that the ball is speeding up as it falls downward. Recall from an earlier lesson, that if an object travels downward and speeds up, then its acceleration is downward.

Free-fall acceleration is often witnessed in a physics classroom by means of an ever-popular strobe light demonstration. The room is darkened and a jug full of water is connected by a tube to a medicine dropper. The dropper drips water and the strobe illuminates the falling droplets at a regular rate - say once every 0.2 seconds. Instead of seeing a stream of water free-falling from the medicine dropper, several consecutive drops with increasing separation distance are seen. The pattern of drops resembles the dot diagram shown in the graphic at the right.

 

 

 

 

 

 

Lesson 5 : Free Fall and the Acceleration of Gravity

 

 1-D Kinematics: Chapter Outline || About the Tutorial || Tutorial Topics || Usage Policy || Feedback  

Other Resources: Physics Home Page || Multimedia Physics Studios || Shockwave Physics Studios ||

Minds On Physics Internet Modules || The Review Session

© Tom Henderson

1996-2007