1-D Kinematics: Chapter Outline || About the Tutorial || Tutorial Topics || Usage Policy || Feedback

Lesson 1: Describing Motion with Words

Introduction to the Language of Kinematics

Scalars and Vectors

Distance and Displacement

Speed and Velocity

Acceleration


Lesson 2: Describing Motion with Diagrams

Introduction to Diagrams

Ticker Tape Diagrams

Vector Diagrams


Lesson 3: Describing Motion with Position vs. Time Graphs

The Meaning of Shape for a p-t Graph

The Meaning of Slope for a p-t Graph

Determining the Slope on a p-t Graph


 

Lesson 4: Describing Motion with Velocity vs. Time Graphs

The Meaning of Shape for a v-t Graph

The Meaning of Slope for a v-t Graph

Relating the Shape to the Motion

Determining the Slope on a v-t Graph

Determining the Area on a v-t Graph

 

Lesson 5: Free Fall and the Acceleration of Gravity

Introduction to Free Fall

The Acceleration of Gravity

Representing Free Fall by Graphs

How Fast? and How Far?

The Big Misconception

 

Lesson 6: Kinematic Equations

The Kinematic Equations

Problem-Solving

Kinematic Equations and Free Fall

Sample Problems and Solutions

Kinematic Equations and Graphs

 

 

Lesson 1: Describing Motion with Words

Scalars and Vectors

Physics is a mathematical science. The underlying concepts and principles have a mathematical basis. Throughout the course of our study of physics, we will encounter a variety of concepts which have a mathematical basis associated with them. While our emphasis will often be upon the conceptual nature of physics, we will give considerable and persistent attention to its mathematical aspect.

The motion of objects can be described by words. Even a person without a background in physics has a collection of words which can be used to describe moving objects. Words and phrases such as going fast, stopped, slowing down, speeding up, and turning provide a sufficient vocabulary for describing the motion of objects. In physics, we use these words and many more. We will be expanding upon this vocabulary list with words such as distance, displacement, speed, velocity, and acceleration. As we will soon see, these words are associated with mathematical quantities which have strict definitions. The mathematical quantities which are used to describe the motion of objects can be divided into two categories. The quantity is either a vector or a scalar. These two categories can be distinguished from one another by their distinct definitions:

  • Scalars are quantities which are fully described by a magnitude (or numerical value) alone.
  • Vectors are quantities which are fully described by both a magnitude and a direction.

The remainder of this lesson will focus on several examples of vector and scalar quantities (distance, displacement, speed, velocity, and acceleration). As you proceed through the lesson, give careful attention to the vector and scalar nature of each quantity. As we proceed through other units at The Physics Classroom Tutorial and become introduced to new mathematical quantities, the discussion will often begin by identifying the new quantity as being either a vector or a scalar.

 

 

Check Your Understanding

1. To test your understanding of this distinction, consider the following quantities listed below. Categorize each quantity as being either a vector or a scalar. Click the button to see the answer.

 

Quantity

Category

a. 5 m

 

b. 30 m/sec, East

 

c. 5 mi., North

 

d. 20 degrees Celsius

 

e. 256 bytes

 

f. 4000 Calories

 

 

 

 

Lesson 1: Describing Motion with Words

 

 1-D Kinematics: Chapter Outline || About the Tutorial || Tutorial Topics || Usage Policy || Feedback  

Other Resources: Physics Home Page || Multimedia Physics Studios || Shockwave Physics Studios ||

Minds On Physics Internet Modules || The Review Session

© Tom Henderson

1996-2007